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Abstract--An analysms of the effect of the Prandtl number on the linear stabdlty of axzsymmetnc (m = 0) 
dmturbances on steady natural convectmon contained between two concentric sphencal shells when the gap 
is narrow are presented. The disturbance equations are solved using a truncated spectral senes. Convergence 
of the senes ms exarmned. Prandtl numbers range from 0 to 100 whale the relatwe gap-wmdth is emther 0 100, 
0.075, or 0_050 Results confirm the hypothesis that expenmentally observed changes m the basmc mouon 
for certain flow parameters are due to ~ts mstabd~ty and indicate that for any Prandtl number larger than 
a tranmion value, the unstable flows evolve to a steady pattern whde for smaller Prandtl numbers the 

bifurcated flows are ume penodlc 

1. I N T R O D U C T I O N  

PRESENTED in thts article are the results of  a numerical  
hnear  stability analysts of  steady natura l  convect ion 
between concentr ic  na r row-gap  sphenca l  shells. The 
boundar ies  are of  uniform,  but  different temperatures,  
with the inner  surface being the warmer  Gravi ty  acts 
uniformly parallel to the vertzcai axts which passes 
th rough  the c o m m o n  centers of  the spheres. A n  Ober-  
beck-Bouss inesq  fluid fills the annulus.  Model  flmds 
are selected such tha t  Prandt l  numbers  range f rom 0 
to 100, where the Pr = 0 case Js an  ldeahzatmn of  a 
vmscous flutd in which thermal  dts turbances  are com- 
mumcated  ins tan taneous ly  th roughou t  the fired An 
extenswe study of  the stability of  the basic moUon 
is done for a relatwe gap-width of  e = 0 100 with 
addi t ional  da ta  presented for values of  e = 0 075 and 
0 050 

Propert ies  of  the basic m o u o n  and other  related 
results are detailed m ref [1] S~milar pa ramete r  values 
were used m ref. [I] for the problem considered here, 
however  an  error  in the basic m o u o n  for flows having 

a warmer  tuner  bounda ry  caused the s tabthty  results 
and conclusmns to be incorrect  Thei r  general analy- 
sis, however,  remains  correct_ We present here, a more 
tho rough  convergence analysis of  the numerical  solu- 
t ions as well as a more  complete  exp lora tmn of  the 
dependence of  the critical stabd~ty pa ramete r  on the 
Prandt l  n u m b e r  for the correct  basic moUon 

A neutral  stabtli ty m ap  for convect ton of  air m a 
wide range of  gap-widths  is shown m Fig. 1 The m ap  
is based on flow vtsuahzat ion data  of  Bishop et al [2] 
and Yin et al. [3, 4] The mare  po in t  of  the d lus t rauon  
zs the occurrence of  regmns of  pa ramete r  space 
whereto the flows are observed to be e~ther steady or 
unsteady.  It is the hypothesis  of  the work reported 

here that  the occurrence of  flow transt t tons  ~s due 
to the hydrodynamtc  mstabdi ty  of  the bastc mot ion  
ra ther  than being a result due to errors  m the exper- 
imental  method.  The  results shown here demons t ra te  
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Frog [ Summary of parameter values used m flow vzsu- 
ahzation experiments and numenca] simulation of the basic 
motion for air m the spberic, a] annulus F]ow vzsualizatzon 
data suggest six different types of flow CE, crescent eddy 
(A) ,  KSE, kidney-shaped eddy (I-Q), MKSE, modified kid- 
ney-shaped eddy ( ~ ) ;  PIC, penodzc internal contracting 
eddy (O) ,  3DSF, three-dmmenszonal spiral flow (C)), FV, 
falhng vortices (A) [2, 4]. Only the CE and KSE regions 
have steady flows. Values of~ and Ra used in computing the 
steady basac motion [9-14] (m) whach he above the CE and 
KSE regions may not represent the true flow field Computed 
crmcal Rayleigh numbers Ra~ = ~ Pr for a Prandtl number 
of 0.7 obtained here are mdzcated by (V) The solid 
honzontal hne represents the Rayleigh-B6nard hmtt of 

Rac = 1708 
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NOMENCLATURE 

C(t) proportmnality coefficient 
_~ problem domain 
g gravltatmnal acceleration constant 

[ms 2] 
g~,,h/, partml spectral expanmon functions 
Gr Grashof number, gilA T(Ar) 3/v= 
Gr~ critical Grashof number 
i x / - I  
m longitudinal wave number 
Arc number of terms m Chebyshev (radial) 

expansion 
~7c minimum value of Arc for convergence 
N o number of terms in Legendre 

(latitudinal) expansmn 
~Tp minimum value of Np for convergence 
No number of zeros of P~. plus 1 
P.(x) Legendre polynomial of degree n 
Pr Prandtl number, v/c~ 
Pr~ tranmional Prandtl number 
r d~menmonless radial coordinate, 

( l - -e) /e  ~< r ~< l/e 
r,, r o tuner and outer radii of the spheres [m] 

dimensionless stabdity parameter, 
x/(Gr) 

~ critical value of 
Ra Rayleigh number, Gr Pr 
Ra: cntmal Raylelgh number 
s stretched eigenvalue, a ~  
t dimensionless time [s] 

disturbance temperature field 
T.(z) Chebyshev polynomial of degree n 
T., To inner and outer surface temperatures [K] 
To dimensional base flow temperature field 

disturbed flow velocity vector (v. v~, v~) 
v. v .  v, radial, latitudinal, and longitudinal 

disturbance velocity components 

x transformed latitudinal coordinate, cos 0 
Y?(x. ok) sphencal harmonics 
z transformed radial coordinate, 

- l ~ < z ~ < l  
Z~. number of zeros of P~, 

Greek symbols 
a thermal dlffUSWlty [m: s - ' ]  
fl coefficient of volumetric thermal 

expansion [K-  1] 
F, A , - ,  fl functmns describing the base flow 
e relative gap-width, l - r,/ro 

stretched radial coordinate, r -  (1 - E)/e 
0 latitudinal spherical coordinate 
® latitudinal 'scale' of dtsturbance cells 
v kmematm viscosity [m 2 s -  ~] 
p fired density [kg m -  3] 
a eigenvalue, s/~t 
ere real part of the cnucal value of a 
4) longitudinal sphencal coordinate 

disturbance polozdal potential function 
base flow stream functmn 
disturbance toroidal potential function 

Subscripts 
a axlsymmetnc quantity 
c value at critmahty 
1 value at inner radius 
o value at outer radius 

Superscripts 
m longitudinal wave number 
* scales for dlmensmnal quantities 

that unsteady flows can evolve from situations where 
steady boundary conditions persist, hence providing 
evidence confirming that the hypothesis is true 

2. THE BASIC A N D  DISTURBED FLOW 

In this section, the basic motion, the linear stability 
evolution equatmns, and the solution method are out- 
lined A thorough discussion may be found in ref [5] 

2.1 The bastc motion 
The basic motion is the steady natural convective 

flow of an Oberbeck-Bousslnesq fluid induced by a 
constant temperature difference between the sphencal 
boundanes, the inner surface being the warmer Non- 
dimenslonalization of length, temperature, velocity, 
time, and pressure is accomphshed by using the fol- 

lowing scales : 

L* = Ar = r o - r ,  

T*  = A T =  I T o - T , I  

V* = ~/ (gflA TAr) 

t* = L*/V*, and 

P* = p ( V * ) :  

The solution to the Boussmesq equations of motion 
was found as a regular perturbation expansion m 
powers of e =  (ro--r,)/ro, the dlmensmnless gap- 
width. The solution IS documented in ref. [6] and is 
found to be 

~0(r, x) = (1 - x ' ) [ l " ( r ,  .~, Pr, e) + xA(r; ~,  Pr, e)] (I) 
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T0(r, x) = T, (r ; ~l, Pr, e) + x[-(r ,  ~ ,  Pr, 8) 

+xl l ( r ;~ ,Pr ,  e)] (2) 

where x = cos 0 and the functions F, A, Tt, E, and f~ 
are each of the general form 

At 

r = ~ " P f  ~ (-- 1)'),,~". 

Forms of these functions specific to this research are 
given in Appendix I of  ref. [5]. The stretched radial 
coordinate, (, is related to the radial coordinate, r, as 

= r - ( 1  -e)/e,  Pr is the Prandtl  number  of the fluid, 
and ,~ = [gflAT(Ar)3/v~] ~/2 the stability parameter 
The solution was found to order e s, and is valid for 
[6] 

720]  ~/2 

< L~rj 

2 2 The hnear stabihty problem 
The basic motion represented above is to be exam- 

ined for stability using the usual superpositlon of an 
arbitrary disturbance field upon the basic motion and 
then keeping only those terms with magnitude com- 
parable to the amplitude of the disturbance field. In 
general, the disturbance field evolves in three dimen- 
sions. Here it is assumed a p n o n  that the disturbance 
flow is two-dimensional, being axisymmetric The 
axisymmetric analysis leads to upper bounds to the 
critical stability parameter for the general disturbance 
field as a function of Prandtl  number  and dimen- 
sionless gap width. The equations governing the gen- 
eral non-hnear  disturbance field are represented by 

~ M ~  = f~.(~,UI6) +f, . , (~,Ulfi l6)  (3) 

where f~ and f~ are respectively linear and bihnear 
operators The various matnces in equation (3) are 
defined as 

U = 

fi  = 

,4, 

[il 

I7°:1 M =  V~ 

0 Pr 

(6) 

f.  = Pfi (7) 

L.. = N (8) 

where P is a 3 x 3 linear differential matrix operator 
and N a 3-element non-hnear  vector, i" is the dis- 
turbance teml~rature field and the quantities 
tb(r, x, ~b, t) and ~( r ,  x, ~b, t) are scalar poloidal and 

toroldal potential funcuons, respectwely, and are 
related to the disturbance velocity components,  ~ = 
(f,, ~ ,  ~,), by 

~. = curl 2 (~&) 

~, = curl (?~)  

so that the individual components of velocity are then 

r 

e ,=  ~/( l - -x=)a  r~x  + -  
r dr x/(1 - x  2) t ~  

ox +r4(l-x~) ~r\ ~/ 

In these equations 

v~f= ( l - x  2) + (1-x2~ 0~ 2 

and V 2 is the (dimensionless) Laplacian operator in 
spherical coordinates. 

When the disturbance field is axlsymmetnc, being 
independent of the longitudinal angle qS, the toroidal 
potential is identically zero (i.e. ~ -  0) The dis- 
turbance field can then be represented using the Stokes 
stream function, where the poloidai potential is 
related to the stream funct ion/~ by 

/~ = r(l - x 2) ~ v  
t3x 

If  tt is now assumed that the disturbance field ~s 
axisymmetric and that the non-linear terms in equa- 
tion (3) are sub-dominant  to the linear terms, the 
governing system is now 

t~6, 
~ M . ~ -  = f~,(~,U, lua), ( r , x ) 6 ~  (9) 

The domain ~ is defined as 

~ -  r,x) < r < - ,  - l < x < l  . 
g 

The matrix M, is the axlsymmetnc form of the oper- 
ator M and f~. = P, fi, Note now that 

,10, 

P , = [ ~ , . j ] ,  l =  1,2, j = l , 2  (12) 
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where 

~" [3¢' ~ V~(') . , , , ( . )  = v : v : , ( . ) - ;  

+ E- ' ( 0 )~  ~ ( ' )  + ,_ r ~r r ~x  V;V;(')  

(l-x-~)g~-'~ ? z ] + - -  
r cx" ~r v ' ( ' )  

+ - - -  ( U ( O ) v ~ ( - ) )  
r ~x 

Pr [-0To 2 X2 )6T0 ] = - ; -  

\ ~ , x /  

The various operators defined in the above system are 

1 0 { ~ 0 f ' ~ + ~ V ~ ( f )  

9¢'(f) = ; ~r (rf) 

e'-f (1-x'-) e2f 
:- ~, and E2(f) = ~r 2 + r" ox- 

J kr, x~ Or Ox ?x dr 

The boundary conditions on • and 7 ~ are 

= ~ - =  T = 0  on ? ~  (13) 
c r  

where 

( 3 ~ ' = {  (r 'x) l r - (1-~)-e ,  l ~ < x ~ < l }  

~ ,  = r,x)lr = , - 1  <~ x ~ 1 

The initial conditions are arbitrary, but are assumed 
to be of "small' amplitude compared to the basic 
motion and can be represented as a series of a com- 
plete set of functions_ 

2 3 Solulwn o f  the hnear system 
The linear system of equations, (9), is solved 

using the method of normal modes. Let A(r, x, Lp, t) 
represent an arbitrary disturbance amplitude Then 

assume that A can be expanded as 

A ( r , x , ~ , t ) =  Z Y'p(x, dk)A~(r,t) (14) 
I f f i O m = - I  

where the functions Y'p(x, dp) are complete and are 
called spherical harmonics The index m denotes the 
wave number in the longitudinal direction, 4~ For 
axlsymmetrlc disturbances, m = 0 so that 

and is independent of ~ P~(x) is the associated 
Legendre function of order I and degree 0, which is 
equivalent to the lth order Legendre polynomial 
of the first kind These functions are also orthogonal 
wRh weight 1 over - 1 ~< x ~< 1. Consequently, the solu- 
tion is composed of functions from a complete set 
and which are orthogonal, i e a sequence of normal 
modes_ Specifically, let 

Np 

@(r,x,t)  ~ ~ g,(r)Pl(x)e °,' (15) 
1 -  I 

Np-- I 

7"(r,x, t) ~ ~ ht(r)Pl(x ) e",' (16) 
1 = 0  

where the infinite sum has been truncated to a total 
of Np terms and two unknown sets of functions 
remain : gM) and h~(r). A finite set of ordinary differ- 
entlal equatmns for the g~ and h~ functions is obtained 
after substituting the series (15) and (16) into equation 
(9) and then applying the orthogonahty property of 
the Legendre polynomials This set of ordinary differ- 
entaal equations ts transformed into a series of 
algebraic equations after applying the Chebyshev-tau 
method described in ref [7] This solution method 
requires the radial coordinate to be mapped onto a 
domain of [ -  I, 1] using 

and that the g and h functions be expanded in a 
truncated series of Chebyshev polynommls of the 
form [7] 

N: 

g,(:) ~ ~ g,,T,(z) (17) 
1 - o  

N¢ 

h,(:) ~ ~ hoT,(z) (18) 
1 - 0  

The result of this process is an elgenvalue problem of 
the form 

[ ( B - ' A ) - s l ] x  = 0 (19) 

where the eigenvalue s = aM. The matrices A and B 
have elements which depend on the physical par- 
ameters of  the problem e, M. and Pr and implicitly on 
Np and N, (until enough terms in the senes are 
included for convergence) The elgenvalues in equa- 
tion (19) were computed using the EISPACK driver 
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RG and matrix mversmns were camed out using the 
L INPACK routines SGEFA and SGESL. 

For instability, ft Is reqmred that the elgenvalue 
with the largest real part m the spectrum of e]gen- 
values tr found from equatton (19) has tts real part 
idenucal to zero The imaginary part of that e~gen- 
value may or may not  be zero If  the ~maglnary part 
is zero, a Principle of  Exchanye of Stabdmes is said 
to exist_ We then wish to search for the set of par- 
ameters for which 

max (Re {s,}) = s~(~,Pr, c,N~,Np) = 0 

producing a surface of neutral stabdity of the form 

~¢ = ~ ( e ,  Pr, Np, N~). (20) 

The solution procedure used to find equation (20) 
~s summanzed m the following a igonthm 

(l)  Select a value of e fixm 9 the geometry (0 < 
e~<01)  

(2) Select a value of  the Prandtl number, Pr, fixing 
the flutd to be used. 

(3) Select a value of  ~,  e ~. ~1- 
(4) Compute the elements of  A and B m equation 

(19) 
(5) Compute the vector of e~yenvalues, s, and find the 

one hay,rig the largest real part. Denote thts e,genvalue 
a s s  I 

(6) Check Re {s.} / f R e  {s,} Is numertcally zero, 
then go to Step 7 I f  Re {s~} ts greater than zero, then 
decrement ~t and repeat Steps 4 and 5. I f  Re {s~ t ts 
less than zero, then increment ~ and repeat Steps 4 
and 5. Interpolation may be used to find new values of 

(7) Compute the crttwal elgenvector x~ (and the tau 
coefficients [7] tf destreag. 

(8) Repeat Steps 3-7 for varmus combmattons of  
and Pr 

2 4 Convergence o! the approximate soluttons 
Of major concern m the solution process is whether 

or not  the truncated senes used for the disturbance 
flow variables has converged Np controls the number 
of terms used in the latstudlnal variation of the d~s- 
turbances through the Legendre polynomials and Arc 
the number  of terms m their radsal dependence using 
Chebyshev polynommls_ Let the minimum values for 
convergence of the Legendre and Chebyshev senes be 
denoted ~Tp and ~7c, respectwely Note that in cases 
for which Pr ~ 100, ~ was computed to three digit 
accuracy except for Pr = 0 and 0.01 where the accu- 
racy was four digits The effect of  Np and Arc on ~ ~s 
shown m the following senes of figures. 

The senes of dlustratmns, Figs 2--4, show con- 
vergence of the spectral series for Pr = 1, 10, and 100 
for e = 0.100 This ts the widest gap studied In each 
case, ~7o = 8 was sut~cmnt for convergence of the 
Chebyshev senes There is a shght tendency for/Vp to 
decrease with increasing Pr, being 42 for Pr = I and 
40 for Pr = 100. This effect is summanzed more com- 
pletely tn Table 1. The apparent sudden decrease m 
~c m Figs. 3 and 4 when N o changes from 40 to 42 for 
Nc = 6 is a result of  the three d~g~t accuracy of the 
results 

F~gures 5-7 show that as the radms ratio increases 
to ~ = 0.075, the value of N~ = 8 ~s sufficmnt for con- 
vergence for all Pr > 1. However, substanttally more 
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Table 1 Mm]mum values of N: and Np for convergence of Mc ® is hsted m deg 

Prandtl number, Pr 
<0 3 I 10 100 

•o gp ® ~7o gp ® go ~Tp o go gp ® 

0.100 
0 075 
0 050 

14 46 3 83 8 42 4 19 8 38 4 62 8 40 4 39 
14 50 3 53 8 52 3 40 4 50 3 53 8 52 3 40 
- -  > > 7 0  < 2 5 4  8 ~74 < 2 4 0  8 ~72 < 2 4 7  8 ~74 < 2 4 0  
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terms are required m the Legendre series, increasing 
to at  least ~Tp ~ 50 This is a reflect,on of  the scale of  
the d is turbance  flow in the lat i tudinal  &rect ton As 
the gap-width  decreases, the results indicate tha t  the 
cells which form the dis turbed flow field decrease m 
lat i tudinal  extent. In order  to resolve these smaller  

scale objects,  more  terms in the angular  dependence  
approx imat ion  are requtred. An  est imate of  the size 
of  the small  scale structure,  O, ts 

/Z 

o ~ - -  ( 2 1 )  
No 
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where 

No = l + Z ~ p  

and  where Z~Tp is the n u m b e r  of  zeros in the Legendre 

polynomial  P~7,. Fo r  example, for e = 0.075, Np = 52 
and No = 53. Then  O ~ 0.0593 rad (or 3.4°). Results 

for O are summar ized  in Table  1_ 
Convergence  of  the series for e < 0.075 was s~m,lar 

to the results for e = 0.100 and  0.075 As m&ca ted  m 
Table 1 values of  .Np increase to more  than  70! Nc 
appears  to be insensitive to ~, at least for P r  > 1 

Inheren t  m th~s s tudy is the reqmrement  of  large 
amount s  of  comput ing  memory  For  cases ,n which 
Np = 70 and Arc = 12, roughly 28 megawords  of  

C R A Y  2 mare  memory  was reqmred to per form the 
computauons .  F r o m  the trends shown m the data,  as 
the gap-width decreases 0-e ~ ---, 0), ~Tp will grow even 
larger As Pr  decreases toward zero, Nc hkewlse 
increases. These trends result m a demand  for greater 

computer  memory.  

3. T H E  N E U T R A L  S T A B I L I T Y  C U R V E  

The curve represented by equat ion  (20) when Np 
and Arc are fixed at 37p and  No, respectively, has been 
computed  for e = 0 100 and  0075  The Prandt l  
n u m b e r  was varied from 0 to 100 The results are 
summarized ,n Fig. 8 and  ,n Table 2. In this figure, 
Pr  = 0 Is plot ted as Pr  = 10-  4 

Recall that  the values computed  and shown here 
presume an axisymmetric  &s turbance  field. They will 

Table 2 -~c for axlsymmetnc disturbances 
m narrow-gap spherical annul] 

Relalave gap-w~dth, 

Pr 0.100 0.075 0 050 

000 108 8 
0 05 99 6 
0 10 942 
0 21 88 2 
0 23 87 5 
0 25 87.0 
0 27 86 7 
0 28 
0 29 86_6 
0.30 86.3 
0 305 85 0 
0_31 83_8 
0 33 79 5 
0 40 69 6 
050 61 3 
0 70 51_4 
1 00 429 
2 00 30_3 
3_0~ 
400 
5_00 192 

10.00 13_6 
20.00 9 59 
30.00 7.83 
40 O0 6.78 
50 00 6.07 
6O 00 5.54 
70.00 5_13 
80 00 4 80 
90 00 4 47 

10000 4 29 

102 2 

914 
87 0 
86 3 
857 
85 2 
85 1 
83 2 
810 

79 1 

67 7 
6O 2 
50 7 50 3 
42 4 42_ 1 
3O 0 
24_5 
21_2 
19_0 
134 
9 49 
7_75 
6_71 
610 
5_48 
5 07 
4 74 4_71 
447 444 
4 24 4 21 
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FIG 8 Neutral stabdlty of natural convecUon between narrow-gap spherical shells 

therefore be either the cntical values for the problem 
or their upper bound For, if m equation (14) m > 0 
and a corresponding value of  .~c,>o is found which 
exceeds that computed for m = 0, the basic motion 
would have already become unstable for the smaller 
value of  .~ . . . .  As an illustration, Gardner  (p. 127 of  
ref. [5]) found for Pr = 0.7 and e = 0 1 that the critical 
wave number was m = 2 giving ~'c = 51.296. In Table 
2, ,~c = 51 4 at m = 0 for the same Pr and 

There are five general comments  to be made regard- 
ing the neutral curve of  Fig 8 

(1) The neutral stability curves have upper bounds 
for each e, being 

~0(e) = lira ~c(e, Pr) 
P r ~  0 

and are asymptotic to the hnes defined by ~c(e, Pr) --- 

~¢0(c) 
(2) The neutral curve is a monotone  decreasing 

function of  Pr for each e 
(3) A transition region exists over which the neutral 

curve changes from one structure to another A tran- 

sition Prandtl  number, P r ,  Is defined as that value of  
the Prandtl number which segregates the structures of  
the neutral curve_ 

(4) For  Pr > PrL the neutral curve is hnear on a 
log-log plot 

(5) As the dimensionless gap-width decreases, the 
values of  ~ decrease while keeping the Prandtl num- 
ber fixed This is more clearly seen in Table 2 

The neutral stability curve IS asymptotic from below 
to the line .~c = ~0(e) and the asymptote, as a func- 
tion of  e, increases with e. The specific dependence of  

the asymptotes on the relative gap-width, e, is shown 
m Table 2 as the entnes for Pr = O. 

The most stnking feature of  Fig. 8 is the transition 
from a linear structure to a non-hnear structure at the 
transition Prandtl number, Pr, In the linear segment, 
the slope of  the line is - 1/2 on a log-log plot. This 
indicates that for Pr > Pr, the critical stabdlty par- 
ameter can be correlated as 

c(~) 
~c = for Pr > Pr, (22) 

~/(er) '  

or that a cnttcal Rayleigh number can be defined over 
the same Prandtl number range such that 

Rac = Grc Pr = C2(~) 

which is independent of  Pr The proportionality 
coeffi6aent C(~) is given m Table 3 for e = 0 100, 0.075, 
and 0 050 

The t ransmon regions are magmfied m Fig. 9 This 
figure illustrates the linear to non-hnear transition in 
the neutral curve and identifies the values of  Pr, 
Values of  PrL are given m Table 3 Gardner  (Section 
6 3 1 of  ref [5]) has shown that the Prandtl number 

Table 3 Transmon Prandtl numbers and pro- 
portlonahty coefficients, C(8), for Pr > Pr, In 

equation (22) 

Relative gap-width, ~ C(t) Prt 

0 100 42 9 0.30 
0_075 42 4 0 28 
0.050 42 1 - -  
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FIG 9 Magnificat,on of the neutral stability curve near the trans,tlon Prandtl number showing the change 
from hnear dependence on Pr to a non-hnear dependence as Pr decreases 

plays a most important  role in the bifurcation of  the 
unstable solutions. As the Prandtl number approaches 
the transtUon Prandtl number from above, the 
tmaginary part o f  the critical etgenvalue changes from 
zero (t.e. states where a Principle o f  Exchange of  
Stabilities exists) to a non-zero value below Pr,_ This 
is not, m fact, an abrupt  change m IIm {so} 1, but in 
the identity of  that eigenvalue having the largest real 
part m the spectrum of  elgenvalues. The lmphcatlon 
Js that for Prandtl numbers greater than Pr,, the bifur- 
cated flow is steady while it is periodic for smaller 
values of  Pr 

Table 4 contains the critical elgenvalues for the 
values o f  e and Pr in Fig. 9 illustrating the change In 
the imaginary part o r s  The real parts o r s  ,n the table 
are not  exactly zero, but are taken to be com- 
putationally zero if their absolute values are less than 
10-3 

Finally, the data of  Table 2 show that as the relative 
gap-width decreases, so do the values of  ~c  As the 

gap-w~dth decreases toward zero, the upper and lower 
parts of  the annulus become more hke horizontal,  
parallel, rigid plates The lower regmn is stably strati- 
fied since the warmer surface is above the cooler, 
while the upper region is potentially unstable The 
equatorial  region behaves more like vertical, parallel, 
rigid plates with one plate warmer than the other 
Consequently, it is expected that the critical stability 
parameter should approach that for horizontal, 
parallel, ngld-rigad plates (the Raylelgh-B6nard 
problem), being R a c =  1708 (for critical wave 
number ac = 3 l l 7 )  [8] Since Rac = Grc Pr = ~ Pr, 
the equivalent value m terms of  ~c  is 

41.33 
~l . . . .  - x / t r  )''~r" (23) 

The values of  Rc,_o given by equation (23) then pro- 
vide lower bounds to the results of  this paper In Table 
2, data are given for e = 0 050 for Pr >1 0.7 The data 

Table 4. Critical elgenvalues for Prandtl numbers near Pr, showing the change from 
steady to ume-penod]c bifurcation of the basic flow 

e = 0 100 e = 0.075 

Pr s Pr s 

0.250 --1 764x 10-6+112 631 
0270 --9 797 x 10-6+d2 820 
0290 --5 229 x 10-6+il3 107 
0 300 1 347 x 10-6+10 
0 305 2 245 x 10-5+]0 
0 310 3 631 x 10-5+10 

0 23 --8 740 x 10-4+]8.097 
0.25 --1.343 x 10-6+i8 226 
0.27 --4.926 x 10-6+,8.317 
0 28 - - 3  947 x 10-4+18.368 
0.29 5 614x 10-4+i0 
0 30 9 346 x 10-6+10 
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confirm the trend to the predicted lower bound.  Con-  
sider Pr = 0.7 The value of  ~'~,_,, = 49.4, which com- 

pares with 50 3 for e = 0 050 

4. CONCLUSIONS 

Central  to this research was the computa t ion  of  a 
neutra l  s tabihty  m ap  showing the dependence of  the 
critical s tabihty  pa ramete r  ~ on Pr for each e Each 
neutral  curve was found to be a m o n o t o n e  decreasing 
funct ion of  the Prandt l  n u m b e r  A characterist ic of  
each neutral  curve was found to be the presence of  a 
t ransi t ional  Prandt l  n u m b e r  dlvldmg the curve into 

distinct structures.  Values o f  Pr, were found to be 0 30 
for e = 0_i00 and  0.28 for e = 0 075 For  Pr > Pr,  the 
s tructure is lmear  on  a log- log plot having a slope of  
- 1/2 Tha t  ts 

C(~) 
':~e = x/(Pr) 

where C(t) is a propor t iona l i ty  coefficient dependent  
on  the relative gap-width,  E W h e n  Pr < Pr ,  the struc- 
ture is non- l inear  approach ing  an upper  bound  at 
Pr = 0. It was also found that  as the gap-width 
decreased, the values of  ~ approached  those for the 
Rayle lgh-B~nard  s tabihty  problem.  

The results presented m this work confirm the 
hypothesis  stated in the In t roduc t ion  that  the ob- 
served changes m the pa t te rn  of  the basic mot ion  
for cer tain flow pa rame te r  values are due to mstab lh ty  
of  the basic mot ion.  The results indicate that  for 
Prandt l  numbers  larger t han  Pr,, the unstable  flows 
evolve to a steady pa t te rn  while for smaller Prandt l  
numbers  the bifurcated flows are time periodic. 

Fmally, the results found here conform to the exper- 
imental  observa t ions  of  basic flow t r a n s m o n  as shown 
m Fig 1 for air (Pr ~ 0 7) A l though  observat ions  

were made  for larger e than  considered here, an  extra- 
pola t ion of  the da ta  to nar rower  gap-widths shows a 
reasonable  t rend to the data  found m this research 
The wsuahza t ion  results suggest that  the bifurcated 
flow field (the "Falling Vortices '  flow pat tern)  is 
unsteady and three-dlmensional  (at least fore  > 0 15), 
while the results found here for r. < 0.1 predtct a 
steady bifurcated flow which ts by def imtmn two- 
d imenstonal  The  lmphca t ion  ts tha t  the cnt ical  
values presented here are true upper  bounds  to the 
critical values for the bi furcat ion 
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EFFETS DU NOMBRE DE PRANDTL SUR LA STABILITE DE LA CONVECTION 
NATURELLE ENTRE DES SPHERES 

R O s u m ~ O n  pr6sente une analyse de l'effet du nombre de Prandtl sur la stab]hte llnealre des perturbations 
ax~symemques (m = 0) pour une convection naturelle permanente entre deux parots concentr]ques 
sph6nques, lorsque l'espace est ,~tro, t Les 6quatlons de perturbation sont resolues en utdlsanl une s6rle 
spectrale tronqu~e On examine la convergence de la sene Les hombres de Prandtl sont comprls entre () 
et 100, tandts que l'espacement relatffest 6gal ~ 0.100, 0.075 et 0,050 Les r6sultats confirment l'hypoth6se 
que les changements observes exp6nmentalement darts le mouvement de base, pour certams param6tres 
d'6coulement, sont dt~s a l'mstabdlte et iIs ind~quent que pour un hombre de Prandtl quelconque plus 
grand qu'une valeur de transition, les ecoulements mstables evoluent vers une configurauon stable, tand~s 

que pour de plus pet]ts hombres de Prandtl les ecoulements btfurques sont perlodtques dans le temps 

EINFLUSS DER PRANDTL-ZAHL A U F  DIE STABILIT,~T DER NATURLICHEN 
KONVEKTION ZWISCHEN KUGELSCHALEN 

Zusammenf~ssung--Elne Analyse des Elnflusses der Prandtl-Zahl auf die hneare Stab]htat yon ach- 
sensymmetrlschen (m = 0) Storungen bet statlonarer naturhcher Konvektlon m konzentrlschen Kugel- 
schalen mtt klemen Spaltwetten wlrd vorgestellt Die Storungsglelchungen werden mlttels emer abge- 
brochenen Spektralrethe gelost Die Konvergenz d]eser Relhe wlrd uberpruft Der Beretch der Prandtl- 
Zahlen erstreckt sich von 0 bts 100, der Berelch der relatlven Spaltwelte betragt 0 ,1 ,0  075 und 0.050 Die 
Ergebmsse bestattgen die Annahme, dab die im Experiment beobachteten ,~nderungen der grundlegenden 
Bewegung be1 gewlssen Stromungsparametern auf elne Instabthtat zuruckzufuhren slnd Dte Ergebmsse 
zetgen, dab fur jede Prandtl-Zahl oberhalb elnes besttmmten Obergangswertes dte mstabllen Stromungen 
m emen statlonaren Zustand ubergehen, w/~hrend fur klelnere PrandtI-Zahlen pertodlsch gegabelte 

Stromungen auftreten 

BYlH~IHHE qHC31A HPAH~TH~I HA Y C T O f l q H B O C T b  ECTECTBEHHO~I KOHBEKI.[HH 
M E e K l Y  C O E P H q E C K H M H  O B O f l O q K A M H  

~ A u a . a n 3 M p y e ' r c a  eJmmme ,~nc,~a l'Ipax~JT.q Ha mmeitnym yc'roit~msocrb ocecnMMe'rpMq- 
nslx (m : 0) soaMymctmg c-ramloaapsoli ecrec-rsesaog soHsexmm Mex~y ~eyMS EOHUCHTpHqCCKHMI~ 

c4~pw~ecxm~m o6oaoqxaM~, pacnoJmxemum~u c y3XnM 3a3opo~ YpasHelmn so3Mymeang pemaJoTca 
Ixna yceqessoro cne~Tpa~bnoro pJtaa Pa~MaTpKsaeTca CXOaXMOCTb p ~ o n .  3Haqetmn qsc~a 
I'Ipall~TAa H3MCtlEOTCR OT 0 ~IO I00, a OTHOCWreJlbtlaa mHpHsa 3a3opa cocrannaeT 0,I00; 0,075 w m  
0,050. HoJv/qemsMe pezyJxbTaTla noJxTnepzfnasoT rMnoTc3y o TOM, trio 31[cnepiD~¢STa.r[bHO HaOHw~ae- 
MJdC ]~JlV~H~DIHJ[ OCHOBHOFO Teqel~llJi npH Ol'lp~eJIellllblX napaMerpax TcqeHHa o6ycJIOS.TleHI~ el'o tlec'ra- 
tmoaapaocrbw g O3HaqaloT, q'ro rlpll JDO~M 3saqetmM qncaa rlpatwrJm amue nepexoaHoro 
nec'raJ~oHapaoe TeqenHe n~O~dn" Ha c"rai~onapHJ,~ pexgM, B TO stp~MN J[aK npH HH31[HX 3HaqeHHNX 

qgc.71a l']palU1TJIg 6llOypra~mOHHhle TeqeHHJl NBJImOTCN nepgo~j~ecJmMg so BpeMetlll 


