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Abstract—An analysis of the effect of the Prandtl number on the linear stability of axisymmetric (m = 0)
disturbances on steady natural convection contained between two concentric sphencal shells when the gap
1s narrow are presented. The disturbance equations are solved using a truncated spectral senes. Convergence
of the senes 1s examined. Prandtl numbers range from 0 to 100 while the relative gap-width 1s either 0 100,
0.075, or 0.050 Results confirm the hypothesis that expenmentally observed changes 1n the basic motion
for certain flow parameters are due to 1ts instability and indicate that for any Prandtl number larger than
a transition value, the unstable flows evolve to a steady pattern while for smaller Prandtl numbers the
bifurcated flows are time penodic

1. INTRODUCTION

PRESENTED in this article are the results of a numencal
linear stability analysis of steady natural convection
between concentric narrow-gap sphencal shells. The
boundaries are of uniform, but different temperatures,
with the inner surface being the warmer Gravity acts
uniformly parallel to the vertical axis which passes
through the common centers of the spheres. An Ober-
beck—Boussinesq fluid fills the annulus. Model fluids
are selected such that Prandtl numbers range from 0
to 100, where the Pr = 0 case 1s an idealization of a
viscous fluid 1n which thermal disturbances are com-
municated instantaneously throughout the flmd An
extensive study of the stability of the basic motion
is done for a relative gap-width of ¢ = 0 100 with
additional data presented for values of ¢ = 0 075 and
0050

Properties of the basic mouon and other related
results are detailed in ref [1] Similar parameter values
were used in ref. {1] for the problem considered here.
however an error in the basic motion for flows having
a warmer inner boundary caused the stability results
and conclusions to be incorrect Their general analy-
s1s, however, remains correct. We present here, a more
thorough convergence analysis of the numerical solu-
tions as well as a more complete exploration of the
dependence of the critical stability parameter on the
Prandtl number for the correct basic motion

A neutral stability map for convection of air 1n a
wide range of gap-widths 1s shown in Fig. | The map
1s based on flow visuahization data of Bishop et al [2)
and Yin et al. [3, 4] The main point of the illustration
1s the occurrence of regions of parameter space
wherein the flows are observed to be either steady or
unsteady. It 1s the hypothesis of the work reported

here that the occurrence of flow transitions 1s due
to the hydrodynamic 1instability of the basic motion
rather than being a result due to errors in the exper-
mmental method. The results shown here demonstrate
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FiG | Summary of parameter values used in flow visu-
alization experiments and numerical simulation of the basic
motion for air in the spherical annulus Flow visualization
data suggest six different types of flow CE, crescent eddy
(A) . KSE, kidney-shaped eddy ((0) , MKSE, modified kid-
ney-shaped eddy (V); PIC, peniodic internal contracting
eddy (O), 3DSF, three-dimensional spiral flow (Q), FV,
fallimg vortices (A) [2, 4]). Only the CE and KSE regions
have steady flows. Values of ¢ and Ra used in computing the
steady basic motion [9-14] () which he above the CE and
KSE regions may not represent the true flow field Computed
cntical Rayleigh numbers Ra, = #? Pr for a Prandtl number
of 0.7 obtained here are indicated by (W) The sohd
honzontal line represents the Rayleigh-Bénard limit of
Ra_ = 1708
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NOMENCLATURE
C(e) proportionality coefficient X transformed latitudinal coordinate, cos 6
9 problem domain Y7'(x, ¢) spherical harmonics
g gravitational acceleration constant z transformed radial coordinate,
[ms—7 -1<:-<1
gu.h, partial spectral expansion functions Z A, number of zeros of Py,

Gr  Grashof number, gBAT(Ar)*/v?

Gr.  cntical Grashof number

1 \/ —1

m longitudinal wave number

N, number of terms in Chebyshev (radial)
expansion

N, munimum value of N, for convergence

N number of terms in Legendre

(latitudinal) expansion

minimum value of N, for convergence

N,  number of zeros of Py plus 1

Legendre polynomial of degree n

Pr Prandtl number, v/a

Pr,  transitional Prandtl number

r dimensionless radial coordinate,

(I-gje<r<lje

mnner and outer radn of the spheres [m]

R dimensionless stability parameter,
JGn

A, cntical value of #

Ra  Rayleigh number, Gr Pr

Ra. cntical Rayleigh number

s stretched eigenvalue, ¢ %

t dimensionless time [s]

T disturbance temperature field

T,(z) Chebyshev polynomial of degree n

T, T, inner and outer surface temperatures [K]

T, dimensional base flow temperature field
v disturbed flow velocity vector (v,,v.,v,)
v, v,, vy radial, latitudinal, and longitudinal

disturbance velocity components

Greek symbols
a thermal diffusivity [m*s~']
B coefficient of volumetric thermal
expansion [K ]
I',A,E,Q functions descrnibing the base flow
€ relative gap-width, 1—r/r,
¢ stretched radial coordnate, r — (1 —¢)/e
0 latitudinal spherical coordinate
® latitudinal ‘scale’ of disturbance cells
v kinematic viscosity [m? s~ "]
p fluid density [kg m~?]
a eigenvalue, s/#
o real part of the cntical value of ¢
¢ longitudinal sphencal coordinate
& disturbance poloidal potential function
v base flow stream function
¥ disturbance toroidal potential function

Subscripts
a axisymmetric quantity
c value at criticality
1 value at inner radius
0 value at outer radius

Superscripts
m longitudinal wave number
* scales for dimensional quantities

that unsteady flows can evolve from situations where
steady boundary conditions persist, hence providing
evidence confirming that the hypothesis 1s true

2. THE BASIC AND DISTURBED FLOW

In this section, the basic motion, the linear stability
evolution equations, and the solution method are out-
lined A thorough discussion may be found 1n ref [5)

2.1 The basic motion

The basic motion 1s the steady natural convective
flow of an Oberbeck—Boussinesq fluid induced by a
constant temperature difference between the sphencal
boundaries, the inner surface being the warmer Non-
dimensionalization of length, temperature, velocity,
ume, and pressure 1s accomplished by using the fol-

lowing scales :
L*=Ar=r,—r,
T =AT=|T,—-T|
V* = /(gBATAr)
= L*/V*,
P* = p(V*)?

and

The solution to the Boussinesq equations of motion
was found as a regular perturbation expansion 1n
powers of &= (r,—r)/r,, the dimensionless gap-
width. The solution 1s documented in ref. [6] and 1s
found to be

v(r,x) = 1 =x)[IT(r,R, Pr,e)+xA(r; R, Pr,e)] ()
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To(r.x) = T\(r; R, Pr.e) + x[E(r, R, Pr,)
+xQ(r; R.Pr.e)]  (2)

where x = cos 6 and the functions I', A, T, £, and Q
are each of the general form

N
C=a"pPr ) (-1)yu.

1=1
Forms of these functions specific to this research are
given in Appendix I of ref. [5]. The stretched radial
coordinate, [, is related to the radial coordinate, r, as
{ = r—(1—¢)/e, Pris the Prandtl number of the fluid,
and & = [gBAT(Ar)*/v?]"? the stability parameter
The solution was found to order &%, and 1s valid for

(6]
720 |"2
&< [F]

2 2 The hnear stability problem

The basic motion represented above is to be exam-
ined for stability using the usual superposition of an
arbitrary disturbance field upon the basic motion and
then keeping only those terms with magmtude com-
parable to the amplitude of the disturbance field. In
general, the disturbance field evolves in three dimen-
sions. Here 1t 1s assumed a prion that the disturbance
flow is two-dimensional, being axisymmetric The
axisymmetric analysis leads to upper bounds to the
cntical stability parameter for the general disturbance
field as a function of Prandtl number and dimen-
sionless gap width. The equations governing the gen-
eral non-hnear disturbance field are represented by

o

ZM 3

= fy(#, Ula) + (2, Ulala) 3)
where f; and f, are respectively linear and bilinear

operators The various matnces 1n equation (3) are
defined as

[ v
U=|o0 4
LT,
K
i=|¥y &)
)
vV 0 0
M=} 0 Vv o (6)
0 0 Pr
f.=Pu @)
fiu=N ®

where P 1s a 3 x 3 linear differential matnx operator
and N a 3-element non-hnear vector. T 1s the dis-
turbance temperature field and the quantities
&, x, ¢, 1) and ¥(r, x, ¢, 1) are scalar poloidal and
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toroidal potential funcuions, respectively, and are

related to the disturbance velocity components, v =

(ﬁn '}n ﬁoﬁ)s by
V=94V,

¥, = curl? Gd)

¥, = curl ¢F)

so that the individual components of velocity are then
A
b,=—-V®
r

_ Ju-x) @ a@) 1 o
AN +\/(1_x2)5$

<
B
1

o 1 o[ od
- —- 2 i - il
by =,/(1-x )6x +r\/(l—x2) 6r<r 5¢)
In these equations

2, 0 af 1 o
Vlf—a—xli(l—xz)a—x]-FmW

and V? 1s the (dimensionless) Laplacian operator
sphencal coordinates.

When the disturbance field 1s axisymmetric, being
independent of the longitudinal angle ¢, the toroidal
potential 1s 1dentically zero (1.e. ¥ =0) The dis-
turbance field can then be represented using the Stokes
stream function, where the poloidal potential 1s
related to the stream function A by

R ad
A=r(1-x%)—.
If 1t 1s now assumed that the disturbance field 1s
axisymmetric and that the non-linear terms 1n equa-
tion (3) are sub-dominant to the linear terms, the
governing system 1s now

aa,

ZM, o

= fi.(ga Ualﬁa)v (r- X)Eg (9)

The domain 2 is defined as

(d-¢)

&

1
9={(r,x) <r<g, —l<x<]}.

The matrix M, 1s the axisymmetric form of the oper-
ator M and f, = P.d, Note now that

v

Un - [TO] (lo)
i, = ["T’] an

P.=[?,_,], =12, ;=12 (12)
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where

Pu()=Vivi() -

R
+— -5
rér rax

X ¢
P1() = = ZVHOX+RL [6— (@ —xZ)(-))]

(E*W)Vi( ))}

0To ;s aT,
9‘».()——[ V.()—-(-x )5

((r) xw)

The vanious operators defined 1n the above system are

N 1.
(r26—{>+r—2V;(n
v =2 0-nZ]

1é
H(f)=-=(f)

063(-
a[ )l

Pn() =

1
Vil ==

r

S

ror
2 Cf ) e
E'(f) = r: A and
S(F8) s 2
r.x) ordx @éxér
The boundary conditions on ® and 7 are
I I
b= _-—=7T=0 on ¢¥ (13)
cr
where
0D =092,002,
1—
07, = {(r,x)|r=( FE—). —-1<x< l}

1
02y ={(r0lr=_.-1<x<I
£

The 1nitral conditions are arbitrary, but are assumed
to be of 'small’ amplitude compared to the basic
motion and can be represented as a series of a com-
plete set of functions.

2 3 Soluiion of the hnear system

The linear system of equations, (9), 1s solved
using the method of normal modes. Let A(r, x, ¢, )
represent an arbitrary disturbance amplhitude Then

DouGLAsS et al

assume that 4 can be expanded as

x 1

Arx, 9= ¥ YP(x)AT(r.0)

I=0m=—!{

(14)

where the functions YJ(x,¢) are complete and are
called sphenical harmonics The index m denotes the
wave number 1n the longitudinal direction, ¢ For
axisymmetric disturbances. #1 = 0 so that

2/
Y,"(x,tb)=\/< 4+ )P/( )

and 1s independent of ¢ P/(x) 1s the associated
Legendre funcuon of order / and degree 0, which 1s
equivalent to the /th order Legendre polynomial
of the first kind These functions are also orthogonal
with weight 1 over —1 < x < 1. Consequently, the solu-
tion 1s composed of functions from a complete set
and which are orthogonal. 1e a sequence of normal
modes. Spectfically, let

NP
O(r.x.)x Y gn)Pix) e

I=1

(15)

Np—

T(r.x,ty= Y h(r)P(x) e

=0

(16)

where the infinite sum has been truncated to a total
of N, terms and two unknown sets of functions
remain : g/r) and h(r). A finite set of ordinary differ-
ential equations for the g, and A, functions 1s obtained
after substituting the series (15) and (16) into equation
(9) and then applying the orthogonality property of
the Legendre polynomials This set of ordinary differ-
ential equations 1s transformed into a series of
algebraic equations after applying the Chebyshev-tau
method described 1n ref [7] This solution method
requires the radial coordinate to be mapped onto a
domain of [—1. 1] using

_l 2—¢
=ttt e

and that the g and 4 functions be expanded 1n a
truncated series of Chebyshev polynomials of the
form [7]

Ne

gl(:) = z gth(z)

=0

)

N,
h(z) = ) h,T(2)

s=0

(18)

The result of this process 1s an eigenvalue problem of
the form

[(B-'A)—sI]x = 0 (19)

where the eigenvalue s = ¢#. The matrices A and B
have elements which depend on the physical par-
ameters of the problem ¢, 4, and Pr and imphcitly on
N, and N, (until enough terms in the senes are
included for convergence) The eigenvalues in equa-
tion (19) were computed using the EISPACK driver
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RG and matrnx inversions were carried out using the
LINPACK routines SGEFA and SGESL.

For instability, 1t 1s required that the eigenvalue
with the largest real part in the spectrum of eigen-
values ¢ found from equation (19) has its real part
identical to zero The imaginary part of that eigen-
value may or may not be zero If the imaginary part
1s zero, a Principle of Exchange of Stabilities 1s said
to exist. We then wish to search for the set of par-
ameters for which

max (Re {s,}) = s5.(&#, Pr,e,N,,N,) =0
producing a surface of neutral stability of the form
R. = R(e, Pr,N,,N,). (20$)

The solution procedure used to find equation (20)
1s summarized 1n the following algonthm

(1) Select a value of ¢ fixing the geometry (0 <
e<01l)

(2) Select a value of the Prandtl number, Pr, fixing
the flurd to be used.

(3) Select a value of R, e g. &,.

(4) Compute the elements of A and B in equation
(19

(5) Compute the vector of eigenvalues, s, and find the
one having the largest real part. Denote this eigenvalue
as s,

(6) Check Re {s,} if Re{s,} 1s numerically zero,
then go to Step 7 If Re {s,} 15 greater than zero, then
decrement R and repeat Steps 4 and 5. If Re {s5,} 1s
less than zero, then increment R and repeat Steps 4
and 5. Interpolation may be used to find new values of
R

2537

(7) Compute the crinical eigenvector X (and the tau
coefficients [7] if desired).

(8) Repear Steps 3-7 for various combinanons of ¢
and Pr

2 4 Convergence of the approximate solutions

Of major concern in the solution process 1s whether
or not the truncated senes used for the disturbance
flow vanables has converged N, controls the number
of terms used n the latitudinal varation of the dis-
turbances through the Legendre polynomials and N,
the number of terms in their radial dependence using
Chebyshev polynomials. Let the minimum values for
convergence of the Legendre and Chebyshev senies be
denoted N, and N, respectively Note that in cases
for which Pr < 100, # was computed to three digit
accuracy except for Pr = 0 and 0.01 where the accu-
racy was four digits The effect of N, and N. on A 1s
shown 1n the following senes of figures.

The series of illustrations, Figs 2-4, show con-
vergence of the spectral series for Pr =1, 10, and 100
for e = 0.100 This 1s the widest gap studied In each
case, N. =8 was sufficient for convergence of the
Chebyshev series There 1s a shight tendency for N, to
decrease with increasing Pr, being 42 for Pr =1 and
40 for Pr = 100. Thus effect is summanzed more com-
pletety in Table 1. The apparent sudden decrease in
#.n Figs. 3 and 4 when N, changes from 40 to 42 for
N, =615 a result of the three digit accuracy of the
results

Figures 5-7 show that as the radius ratio increases
to & = 0.075, the value of N. = 8 1s sufficient for con-
vergence for all Pr > 1. However, substantially more
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Table 1 Minimum values of N, and N, for convergence of #. © 1s listed in deg

Prandtl number, Pr

<03 I 10 100
P N. N, e N K ] NN e N N )
0.100 14 46 383 8 42 419 8 8 462 8 40 439
0075 14 50 353 8 52 340 4 50 353 8 52 340
0050 — »70 <254 8 ~74 <240 8 ~72 <247 8 ~74 <240
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terms are required 1n the Legendre senes, increasing  scale objects, more terms in the angular dependence
to at least IVP =~ 50 This 1s a reflection of the scale of approximation are required. An estimate of the size
the disturbance flow 1n the latitudinal direction As of the small scale structure, ©, 1s

the gap-width decreases, the results indicate that the

cells which form the disturbed flow field decrease 1n n

0~ — 21
latitudinal extent. In order to resolve these smaller N, N
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where Table 2 #. for axisymmetric disturbances
in narrow-gap spherical annuli
Ny = 1+Z/vp

Relative gap-width, ¢

and where Zy 1s the number of zeros in the Legendre

polynomual P:vp. For example. for ¢ = 0.075, N, = 52 Pr 0.100 0.075 0050
and N, = 53. Then © ~ 0.0593 rad (or 3.4°). Results 000 108 8 1022
for © are summanzed 1n Table 1. 005 996
Convergence of the senes for ¢ < 0.075 was similar 010 942 914
to the results for ¢ = 0.100 and 0.075 Asndicated 1n 021 882 870
Table 1 values of N, increase to more than 70! N, 023 875 863
i 025 87.0 857
appears 1o be insensitive to ¢, at least for Pr > | 027 267 85 2
Inherent 1n this study 1s the requirement of large 028 85 1
amounts of computing memory For cases in which 029 86.6 832
N,=70 and N, =12, roughly 28 megawords of 0.30 86.3 810
CRAY 2 main memory was required to perform the 8;?5 ggg 701
computations. From the trends shown 1n the data, as 033 795
the gap-width decreases (1.6 ¢ — 0), N, will grow even 0 40 696 677
larger As Pr decreases toward zero, N, lhikewise 050 613 60 2
increases. These trends result 1n a demand for greater 070 51.4 507 503
100 429 424 42.1
computer memory. 200 1303 300
3.00 24.5
400 21.2
5.00 19.2 19.0
3. THE NEUTRAL STABILITY CURVE 10.00 136 134
The curve represented by equation (20) when N, 20.00 959 949
N N . 30.00 7.83 7.75
and N, are fixed at N, and N, respectively, has been 40 00 6.78 671
computed for £é=0100 and 0075 The Prandll 50 00 6.07 610
number was varied from 0 to 100 The results are 60 00 5.54 5.48
summanzed in Fig. 8 and 1n Table 2. In this figure, 70.00 5.13 507
—a 80 00 4 80 474 4.71
Pr =015 plotted as Pr = 10 90 00 447 4.47 444
Recall that the values computed and shown here 100 00 429 424 421

presume an axisymmetric disturbance field. They will
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FiG 8 Neutral stability of natural convection between narrow-gap spherical shells

therefore be either the cntical values for the problem
or their upper bound For, if in equation (14) m > 0
and a corresponding value of #£.  1s found which
exceeds that computed for m = 0, the basic motion
would have already become unstable for the smaller
value of #.__  As an illustration, Gardner (p. 127 of
ref. [5]) found for Pr = 0.7and ¢ = 0 1 that the critical
wave number was m = 2 giving #. = 51.296. In Table
2, R.=514at m=0 for the same Prand ¢

There are five general comments to be made regard-
ing the neutral curve of Fig 8

(1) The neutral stability curves have upper bounds
for each ¢, bemng

Rofe) = i, R, Pr)

and are asymptotic to the lines defined by #.(e, Pr) =
R(e)

(2) The neutral curve 1s a monotone decreasing
function of Pr for each &

(3) A transition region exists over which the neutral
curve changes from one structure to another A tran-
sition Prandt! number, Pr,, is defined as that value of
the Prandtl number which segregates the structures of
the neutral curve.

(4) For Pr > Pr, the neutral curve 1s linear on a
log—log plot

(5) As the dimensionless gap-width decreases, the
values of &, decrease while keeping the Prandtl num-
ber fixed This 1s more clearly seen in Table 2

The neutral stability curve 1s asymptotic from below
to the line #. = ®,(¢) and the asymptote, as a func-
tion of ¢, increases with e. The speaific dependence of

the asymptotes on the relative gap-width, &, 1s shown
in Table 2 as the entries for Pr = 0.

The most stnking feature of Fig. 8 1s the transition
from a linear structure to a non-linear structure at the
transition Prandtl number, Pr, In the linear segment,
the slope of the line is —1/2 on a log-log plot. This
indicates that for Pr > Pr, the critical stabihity par-
ameter can be correlated as

_ C(e)
c \/(Pr)’

or that a critical Rayleigh number can be defined over
the same Prandtl number range such that

Ra. = Gr. Pr = C%(e)

for Pr> Pr, (22)

which is independent of Pr The proportionahty
coefficient C(e) 1s given 1n Table 3 for ¢ = 0 100, 0.075,
and 0 050

The transition regions are magnified in Fig. 9 This
figure 1llustrates the linear to non-hnear transition 1n
the neutral curve and identifies the values of Pr,
Values of Pr, are given 1n Table 3 Gardner (Section
631 of ref [5]) has shown that the Prandtl number

Table 3 Transition Prandtl numbers and pro-
portionahity coefficients, C(¢), for Pr > Pr,n
equation (22)

Relative gap-width, ¢ C(¢) Pr,
0100 429 030
0.075 424 028
0.050 421 —
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FIG 9 Magnification of the neutral stability curve near the transition Prandtl number showing the change
from linear dependence on Pr to a non-hinear dependence as Pr decreases

plays a most important role in the bifurcation of the
unstable solutions. As the Prandtl number approaches
the transition Prandtl number from above, the
imaginary part of the critical eigenvalue changes from
zero (1.e. states where a Principle of Exchange of
Stabilities exists) to a non-zero value below Pr,. This
1s not, 1n fact, an abrupt change 1n |Im {s.}|, but 1n
the 1dentity of that eigenvalue having the largest real
part 1n the spectrum of eigenvalues. The implication
is that for Prandtl numbers greater than Pr,, the bifur-
cated flow is steady while 1t is periodic for smaller
values of Pr

Table 4 contamns the cntical eigenvalues for the
values of € and Pr in Fig. 9 illustrating the change 1n
the imaginary part of s The real parts of s in the table
are not exactly zero, but are taken to be com-
putationally zero 1f their absolute values are less than
1073

Finally, the data of Table 2 show that as the relative
gap-width decreases, so do the values of 2. As the

gap-width decreases toward zero, the upper and lower
parts of the annulus become more like horizontal,
parallel, ngid plates The lower region 1s stably strati-
fied since the warmer surface 1s above the cooler,
while the upper region is potentially unstable The
equatonal region behaves more like vertical, parallel,
rigid plates with one plate warmer than the other
Consequently, 1t 1s expected that the critical stability
parameter should approach that for hornzontal,
parallel, ngd-nigid plates (the Rayleigh-Bénard
problem), being Ra, = 1708 (for critical wave
number a. = 3 117) [8] Since Ra, = Gr. Pr = %2 Pr,
the equivalent value 1n terms of #. 1s

41.33
R, =
Jen
The values of &, given by equation (23) then pro-

vide lower bounds to the results of this paper In Table
2, data are given for ¢ = 0 050 for Pr = 0.7 The data

(23)

Table 4. Critical eigenvalues for Prandtl numbers near Pr, showing the change from
steady to time-penodic bifurcation of the basic flow

e =0100 e =0.075
Pr s Pr K
0.250 —1764x107°+112 631 023 —8 740 x 10~ *418.097
0270 —9797 x 10~%4112 820 0.25 —1.343 x 10~ °+i8 226
0290 —5229x107%+il3 107 0.27 —4.926x 10~ +18.317
0300 1347 x10- %410 028 —3947x107*+18.368
0305 2245x107°4+10 0.29 5614x 10~*+i0
0310 3631 x107°+.10 030 9346 % 107 %+10
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confirm the trend to the predicted lower bound. Con-
sider Pr = 0.7 The value of #. = 49.4, which com-
pares with 50 3 for ¢ = 0 050

Ci~o

4. CONCLUSIONS

Central to this research was the computation of a
neutral stabihity map showing the dependence of the
critical stability parameter #. on Pr for each ¢ Each
neutral curve was found to be a monotone decreasing
function of the Prandtl number A characteristic of
each neutral curve was found to be the presence of a
transitional Prandtl number dividing the curve into
distinct structures. Values of Pr, were found to be 0 30
fore = 0.100 and 0.28 for e = 0 075 For Pr > Pr,, the
structure 1s hnear on a log-log plot having a slope of
—~1/2 That1s

Cle)
J)

where C(¢) 1s a proportionality coefficient dependent
on the relative gap-width, ¢ When Pr < Pr,, the struc-
ture 1s non-hnear approaching an upper bound at
Pr=0. It was also found that as the gap-width
decreased, the values of %, approached those for the
Rayleigh-Bénard stabiity problem.

The results presented 1n this work confirm the
hypothesis stated 1n the Introduction that the ob-
served changes 1n the pattern of the basic motion
for certain flow parameter values are due to instability
of the basic motion. The results indicate that for
Prandtl numbers larger than Pr,, the unstable flows
evolve to a steady pattern while for smaller Prandtl
numbers the bifurcated flows are time penodic.

Finally, the results found here conform to the exper-
imental observations of basic flow transition as shown
m Fig | for air (Pr=07) Although observations
were made for larger ¢ than considered here, an extra-
polation of the data to narrower gap-widths shows a
reasonable trend to the data found in this research
The visualization results suggest that the bifurcated
flow field (the ‘Faliing Vortices’ flow pattern) is
unsteady and three-dimensional (at least for ¢ > 0 15),
while the results found here for ¢ < 0.1 predict a
steady bifurcated flow which 1s by defimtion two-
dimensional The implication is that the cntcal
values presented here are true upper bounds to the
critical values for the bifurcation
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EFFETS DU NOMBRE DE PRANDTL SUR LA STABILITE DE LA CONVECTION
NATURELLE ENTRE DES SPHERES

Résumé—On présente une analyse de 'effet du nombre de Prandtl sur la stabilite hinéaire des perturbations
axisymetriques (m = 0) pour une convection naturelle permanente entre deux parois concentrigues
sphénques, lorsque l'espace est étroit Les équations de perturbation sont resolues en utilisant une série
spectrale tronquée On exarmune la convergence de la serie Les nombres de Prandtl sont compris entre (
et 100, tandis que I'espacement relatil est égal a 0.100, 0.075 et 0,050 Les résultats confirment I'hypothése
que les changements observés expérimentalement dans le mouvement de base, pour certains paramétres
d’écoulement, sont dis a l'instabilite et 1ls indiquent que pour un nombre de Prandtl quelconque plus
grand qu'une valeur de transition. les écoulements instables evoluent vers une configuration stable. tandis
que pour de plus petits nombres de Prandtl les ecoulements bifurqués sont periodiques dans le temps

EINFLUSS DER PRANDTL-ZAHL AUF DIE STABILITAT DER NATURLICHEN
KONVEKTION ZWISCHEN KUGELSCHALEN

Zusammenfassung—Eine Analyse des Einflusses der Prandtl-Zahl auf die lineare Stabihtat von ach-
sensymmetrischen (m = 0) Storungen ber stationarer naturlicher Konvektion 1n konzentrischen Kugel-
schalen mit klemnen Spaltweiten wird vorgestellt Die Storungsgleichungen werden muttels emer abge-
brochenen Spektralreithe gelost Die Konvergenz dieser Rethe wird uberpruft Der Bereich der Prandtl-
Zahlen erstreckt sich von 0 bis 100, der Bereich der relativen Spaltweite betragt 0.1, 0 075 und 0.050 Die
Ergebnisse bestatigen die Annahme, daB die im Experiment beobachteten Anderungen der grundlegenden
Bewegung bei gewissen Stromungsparametern auf eine Instabilitat zuruckzufuhren sind Die Ergebnisse
zeigen, daB fur jede Prandtl-Zahl oberhalb eines bestimmten Ubergangswertes die instabilen Stromungen
m emen stationaren Zustand ubergehen, wahrend fur klemnere Prandtl-Zahlen periodisch gegabelte
Stromungen auftreten

BJIMAHUE YUCJIA MPAHATISA HA YCTONYUBOCTb ECTECTBEHHON KOHBEKLIMHM
MEXAY COEPHYECKUMH OBOJIOYKAMH

AmoTamms—AHanmupyercs BmgHAe Yucna [IpaHATIN Ha /HHEAHYI0 YCTONYHBOCTL OCECHMMETPHY-
HHIX (m = 0) po3MymeHnii cTamMUOHapHOA €CTCCTBEHHOA KOHBEKIMH MCKIY ABYMS KOHLCHTPRYECKAMM
chepayeckAME 060/101KaMH, PACTIONIOMEHHRIME C Y3KHM 3330POM. Y PaBHCHHA BO3MYLUEHHI pelnaoTcs
IUIA YCEYCHHOTO CNEeKTpalbHOro psAaa PaccMaTpHBaeTcCA CXOOMMOCTh PpAROB. 3JHAYeHHA WHCIA
Mpasarns m3Menmorca ot 0 go 100, a OTHOCHTENIbHAA LWIMPHHA 3a30pa coctabifet 0,100; 0,075 win
0,050. ToTyYeRERE pe3yMbTaThl DOATBEPAAAIOT FHNOTE3y O TOM, YTO IXCOCPHMEHTaNbHO Habmonae-
MBIC H3MCHCHAR OCHOBHOTO TEHCHHAA MPH OMpeJeNcHHBIX MTapaMeTpax TCHCHHA 06yCNIOBNCHB! €ro HecTa-
[BOHAPHOCTBIO H O3HAYalOT, 9T0 NpH moGoM 3Havennn 4wHcna [IpaHATiA BhLE NEPEXOAHOro
HECTAIlAOHAPHOE TeYeHME BLIXOOUT Ha CTALMOHAPHMIH PeXHM, B TO BPEMS KAk NPH HUIKHX IHAYECHHAX
gucna [panaris 6udypraltRoHHLIE TETCHHA ABNNIOTCH NEPHOAHYECKUMH BO BPEMEHH



